Dorsal Root Ganglia Neurons and Differentiated Adipose-derived Stem Cells: An In Vitro Co-culture Model to Study Peripheral Nerve Regeneration

نویسندگان

  • Alba C. de Luca
  • Alessandro Faroni
  • Adam J. Reid
چکیده

Dorsal root ganglia (DRG) neurons, located in the intervertebral foramina of the spinal column, can be used to create an in vitro system facilitating the study of nerve regeneration and myelination. The glial cells of the peripheral nervous system, Schwann cells (SC), are key facilitators of these processes; it is therefore crucial that the interactions of these cellular components are studied together. Direct contact between DRG neurons and glial cells provides additional stimuli sensed by specific membrane receptors, further improving the neuronal response. SC release growth factors and proteins in the culture medium, which enhance neuron survival and stimulate neurite sprouting and extension. However, SC require long proliferation time to be used for tissue engineering applications and the sacrifice of an healthy nerve for their sourcing. Adipose-derived stem cells (ASC) differentiated into SC phenotype are a valid alternative to SC for the set-up of a co-culture model with DRG neurons to study nerve regeneration. The present work presents a detailed and reproducible step-by-step protocol to harvest both DRG neurons and ASC from adult rats; to differentiate ASC towards a SC phenotype; and combines the two cell types in a direct co-culture system to investigate the interplay between neurons and SC in the peripheral nervous system. This tool has great potential in the optimization of tissue-engineered constructs for peripheral nerve repair.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Co-culture systems of human sweat gland derived stem cells and peripheral nerve cells: an in vitro approach for peripheral nerve regeneration.

BACKGROUND/AIMS The treatment of peripheral nerve lesions still represents a clinical challenge. Several approaches such as novel biomaterials for nerve guides, addition of growth factors or cellular supplements moved in the focus of research. Especially the application of autologous stem cells is highly promising for future applications. Human sweat gland derived stem cells (hSGSCs) represent ...

متن کامل

Nerve repair with adipose-derived stem cells protects dorsal root ganglia neurons from apoptosis.

Novel approaches are required in the clinical management of peripheral nerve injuries because current surgical techniques result in deficient sensory recovery. Microsurgery alone fails to address extensive cell death in the dorsal root ganglia (DRG), in addition to poor axonal regeneration. Incorporation of cultured cells into nerve conduits may offer a novel approach in which to combine nerve ...

متن کامل

The Use of Adipose Derived Stem Cells in Spinal Cord and Peripheral Nerve Repair the Use of Adipose Derived Stem Cells in Spinal Cord and Peripheral Nerve Repair Table of Contents

6 ORIGINAL PAPERS 7 ABBREVIATIONS 8 INTRODUCTION 1. Clinical background and epidemiology 9 2. Pathophysiology of spinal cord and peripheral nerve injury 2.1. Spinal cord 9 2.1.1. Acute and sub-acute spinal cord injury 10 2.1.2. Chronic spinal cord injury 11 2.2. Peripheral nerve 11 3. Regeneration following spinal cord and peripheral nerve injury 3.1. Regeneration following spinal cord injury 1...

متن کامل

Extracellular matrix from human umbilical cord-derived mesenchymal stem cells as a scaffold for peripheral nerve regeneration

The extracellular matrix, which includes collagens, laminin, or fibronectin, plays an important role in peripheral nerve regeneration. Recently, a Schwann cell-derived extracellular matrix with classical biomaterial was used to mimic the neural niche. However, extensive clinical use of Schwann cells remains limited because of the limited origin, loss of an autologous nerve, and extended in vitr...

متن کامل

Differentiation of Mouse Stem Cells into Neural Cells on PLGA Microspheres Scaffold

       The cellular therapy and nerve tissue engineering will probably become a major therapeutic strategy for promoting axonal growth through injured area in central nervous system and peripheral nervous system in the coming years. The stem cell carrier scaffolds in nerve tissue engineering resulted in strong survival of cells and suitable differentiation into n...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 11  شماره 

صفحات  -

تاریخ انتشار 2015